52,715 research outputs found

    Atomic-Layer-Deposited Al2O3 on Bi2Te3 for Topological Insulator Field-Effect Transistors

    Get PDF
    We report dual-gate modulation of topological insulator field-effect transistors (TI FETs) made on Bi2Te3 thin flakes with integration of atomic-layer-deposited (ALD) Al2O3 high-k dielectric. Atomic force microscopy study shows that ALD Al2O3 is uniformly grown on this layer-structured channel material. Electrical characterization reveals that the right selection of ALD precursors and the related surface chemistry play a critical role in device performance of Bi2Te3 based TI FETs. We realize both top-gate and bottom-gate control on these devices, and the highest modulation rate of 76.1% is achieved by using simultaneous dual gate control.Comment: 4 pages, 3 figure

    The control of motion during entry into the atmosphere

    Get PDF
    Algorithm for control of motion during entry into atmospher

    MoS2 Dual-Gate MOSFET with Atomic-Layer-Deposited Al2O3 as Top-Gate Dielectric

    Full text link
    We demonstrate atomic-layer-deposited (ALD) high-k dielectric integration on two-dimensional (2D) layer-structured molybdenum disulfide (MoS2) crystals and MoS2 dual-gate n-channel MOSFETs with ALD Al2O3 as top-gate dielectric. Our C-V study of MOSFET structures shows good interface between 2D MoS2 crystal and ALD Al2O3. Maximum drain currents using back-gates and top-gates are measured to be 7.07mA/mm and 6.42mA/mm at Vds=2V with a channel width of 3 {\mu}m, a channel length of 9 {\mu}m, and a top-gate length of 3 {\mu}m. We achieve the highest field-effect mobility of electrons using back-gate control to be 517 cm^2/Vs. The highest current on/off ratio is over 10^8.Comment: submitted to IEEE Electron Device Letter

    The Inuence of Misspecified Covariance on False Discovery Control when Using Posterior Probabilities

    Full text link
    This paper focuses on the influence of a misspecified covariance structure on false discovery rate for the large scale multiple testing problem. Specifically, we evaluate the influence on the marginal distribution of local fdr statistics, which are used in many multiple testing procedures and related to Bayesian posterior probabilities. Explicit forms of the marginal distributions under both correctly specified and incorrectly specified models are derived. The Kullback-Leibler divergence is used to quantify the influence caused by a misspecification. Several numerical examples are provided to illustrate the influence. A real spatio-temporal data on soil humidity is discussed.Comment: 22 pages, 5 figure
    corecore